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Problem statement. Remote sensing is a developing
branch of modern science and technology, which is used in
GIS for mapping, land surface management, water and envi-
ronmental management, ecological monitoring, modeling
and forecasting of natural ecosystems conditions, etc.
Besides, it is an important part of modern systems of pre-
cise agriculture, where remote sensing provides the data
that is further integrated with various decision support sys-
tems to improve agricultural management [12; 15; 27]. The
technique provides great opportunities for fast and precise
evaluation of crops vegetation conditions for making rea-
sonable amendments to cultivation technology and obtain
the maximum crops productivity [16; 22]. To perform men-
tioned functions, a number of vegetation indices, which are
calculated by the remote sensing imagery, are used.

One of the most widely spread vegetation indices is
Normalized Difference Vegetation Index (NDVI), which was
first introduced by Rouse et al. (1974) [29]. The index was
the first, which was derived from the satellite imagery data
and applied to distinguish vegetation cover and get infor-
mation about its conditions. It is calculated by the Eq. (1):

NDVI — (anir _avis)
+a,)

anir vis (1)
where: a,, is the reflective infrared range of the spec-
trum, a, . is the visible red range of the spectrum [3].
Analysis of the last studies and publications. NDVI
applications are not limited just to detection of vegetation
and description of its conditions. Moreover, it is an indirect
indicator that testifies about potential photosynthetic activity
of flora, and, as a result, it could be used to obtain informa-
tion on the potential productivity of crops. The connection
between NDVI and volumes of absorbed photosynthetic

active radiation (PAR) is direct and linear [10]. The strong
connection between NDVI and PAR makes it possible to
find out a relationship between NDVI and yields, as the lat-
ter depends directly on the volumes of PAR, which is effi-
ciently used by crops [26, 31].

Purpose. The goal of the study was to determine
the connection between the values of NDVI and yields
of the major spring row crops for early predictions of their
productivity.

Materials and methods. Finding the connection between
NDVI values and yields was performed using polynomial
regression analysis under by the Cramer’s rule [11]. True val-
ues of spring row crops (corn, sorghum and soybean) were
the inputs and corresponding values of NDVI obtained from
the Sentinel-2 and Sentinel-1 combined imagery at critical
stages of the crops growth, namely: V2 (second ftrifoliate)
and R2 (full bloom) for soybean [19]; S3 (growing point dif-
ferentiation) and S6 (half bloom) for sorghum [28]; VT (tassel-
ling) and R1 (silking) for corn [23]. True yields of the studied
crops were obtained during the harvesting of the studied crops
at the experimental field of the Institute of Irrigated Agriculture
of NAAS in 2017-2018. The yields were calculated for
the standard moisture content in grain (14 % for corn, 13.5 %
for sorghum and 12 % for soybean). Coefficient of yields vari-
ation (CV) was calculated as a ratio of the standard deviation
(SD) to the mean [6]. The yields were connected to the corre-
sponding NDVI and the data were processed using Microsoft
Excel at the probability level of 95 % (p<0.05) with further
approximation and calculation of mean absolute percentage
errors (MAPE) for yield predictions [4].

Results. Analyzing NDVI values at the stages
of corn growth we observed the regulation that the values
of the index at the stages of the crop growth (VT and R1)
were similar (Figure 1).
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Figure 1. True and predicted by the NDVI-based model yields of corn

Regression analysis determined the connection of NDVI
and corn yields by the rule of thumb, which is very high
and positive: coefficient of correlation R=0.9906, and coef-
ficient of determination R? =0.9813 [21]. Quadratic Eq.
(2) describes the relationship between the index values
and yield of the crop:

y=8.571xx>+22.755xx—8.035 )

where: y is the yield of maize in t ha', and x is the value
of NDVI at VT or R1 stage.

Approximation of the regression model and calculation
of MAPE, that is less than 10 %, proved high accuracy
and reliability of the prediction model [20].

As for other studied crops, NDVI corresponding to dif-
ferent stages of their growth differed providing unequal
accuracy for the yield predictions.

Thus, the least accuracy of the regression model for
the yield forecasting was for sorghum (Figure 2).
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Figure 2. True and predicted by the NDVI-based model yields of sorghum

The most inequality in the yields assessment was
observed at S3 stage, where it averaged to 22.01 %. The
model at this stage provides reasonable forecasting [20].
The regression Eq. for S3 stage is as follows (3):

y=42.311xx>—30.065x x +7.833 3)

where: y is the yield of sorghum in t ha', and x is
the value of NDVI at S3 stage.



Meniopauisi, 3emnepob6cmeo, poc/IUHHUYMEO

The coefficient of correlation R for the model is
0.8809, the coefficient of determination is 0.7760,
showing a high positive correlation according to the rule
of thumb [21].

Sorghum yield prediction using NDVI at S6 stage has
greater accuracy with an average MAPE of 17.62 % that is
a good forecasting [20]. The regression Eq. for the model
is as follows (4):

y=52.193xx* —42.126xx+10.014 (4)

where: y is the yield of sorghum in t ha', and x is
the value of NDVI at S6 stage.

The coefficient of correlation for the model R is 0.9298,
and the coefficient of determination is 0.8645, that testi-
fies about a high positive correlation according to the rule
of thumb [21].

Regression analysis of NDVI and soybean yields tes-
tified that the highest level of correspondence between
the inputs and outputs was at V2 stage of the crop, when
MAPE averaged to 3.75% testifying about very high accu-
racy of the forecast [20] (Figure 3).
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Figure 3. True and predicted by the NDVI-based model yields of soybean

The forecasting model could be expressed as Eq. (5):
y=-0.221xx*+9.220xx—2.338 (5)

where: y is the yield of soybean in t ha', and x is
the value of NDVI at V2 stage.

The coefficient of correlation R for this model is
0.9914, the coefficient of determination is 0.9829, which is
an extremely high positive correlation [21].

The polynomial regression model for soybean yield
at R2 stage is less accurate with MAPE that is 10.16 %,
however, this value also certifies about the possibility of pre-
cise productivity prediction for the crop [20]. The model for
the yield prediction is as follows in the Eq. (6):

y=-0.221xx>+9.220xx—2.338 (6)

where: y is the yield of soybean in t ha', and x is
the value of NDVI at R2 stage.

The coefficient of correlation R for the model is 0.9377,
the coefficient of determination is 0.8793, testifying about
a very high positive correlation [21].

Our results testify that it is possible to forecast the crop
yields by NDVI with a reasonably high accuracy exceeding
90 % for corn and soybean, while the model accuracy for
sorghum is just about 80 %. Lower accuracy in the sorghum
yield prediction could be put on higher variation in the input
data set used in the study: CV for S3 stage was the high-
est among the studied crops and reached 23 %, while we
observed the tendency to an increase of the forecasting
model performance under lower fluctuations of the input
index (the closest prediction was obtained at the lowest
CV — 16 % at V2 stage of soybean).

Another study on soybean yield prediction by the NDVI
has approved that there is a strong non-linear relationship
between the crop productivity and NDVI with the value
of adjusted R? of 0.721 under the implementation of flexible
Fourier transform model [35]. Very close to our results con-
cerning soybean yield prediction were obtained in the work
of Bolton & Friedl (2013), where the accuracy of soybean
yield prediction by the MODIS NDVI data had a reasonable
accuracy with the coefficient of determination averaging to
0.69 [2]. Another recent study discovered that NDVI values
have a positive correlation with corn and soybean yields
and are good for the yield prediction [13]. NDVI has also been
proved to be efficient for a large-scale corn yield prediction
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by the means of regression models on the basis of long-term
data providing reliable results 6—8 weeks before the harvest-
ing period [24]. Regression analysis of corn yield and NDVI
time series discovered a strong dependence of the harvest on
the NDVI at pre-silking period allowing to predict yield losses
due to unfavourable conditions in this period [34]. There is
a study on the very high reliability of an empirical model “corn
yield — NDVI at flowering stage” that provided just 3 % differ-
ence from the true yields [9]. The study devoted to the deter-
mination of corn yields depending on the NDVI at different
stages of the crop growth showed that the best yield pre-
diction performance was obtained under the implementa-
tion of R2 stage NDVI inputs [18], while our study showed
that the model performance is best at R1 stage. Some sci-
entists claimed about strong dependence of the “NDVI —
corn yield” prediction model on the plant density [5], while
we did not take this factor into account in our study. As for
sorghum, there are a few findings related to the yield pre-
diction based on the NDVI. There is a report stated about
high accuracy (MAPE<20 %) of sorghum biomass prediction
using NDVI data 6 months before harvesting [32]. A compre-
hensive large-scale study, which was performed in the US
with different crops, including sorghum, corn, soybean, on
the establishment of the connections between the yields
and NDVI showed positive correlation between these indi-
ces for all the studied crops testifying about the possibility
for the use of remote sensing data in yield prediction [13].
Another big study devoted to the determination of corn, soy-
bean and sorghum yields through the multivariate regression
analysis of satellite imagery and computed vegetation indi-
ces testified on the reasonable correlation between the indi-
ces and yields (the coefficient of correlation figures were
0.86, 0.74 and 0.65 for corn, soybean and sorghum, respec-
tively) [25]. These results agree with our study, namely, that
the least relationship with the coefficient of determination
of 0.42 was recorded for sorghum.

Besides pure NDVI-based models, scientists developed
combined models using additional indices related to crop
productivity, namely, PAR, leaf area index (LAl), enhanced
vegetation index (EVI), etc. [1; 7; 17]. This is reasonable
in many cases when it is difficult to obtain reasonable pre-
diction performance using vegetation index as the only
input, because introduction of additional indices usually
significantly improves the accuracy. Besides, using bet-
ter computation techniques can also be valuable step for
the enhancement of yield forecasting [30; 33]. However,
sometimes complicated computations, for example, such
as using artificial neural networks (ANN), do not guarantee
the performance, which is significantly better than of regres-
sion analysis: the ANN NDVI-based model of sugarcane
yield prediction had the coefficient of determination equal
to 0.61 that cannot be considered as a good forecast [8].

Conclusions. Statistical analysis of the yields of three
spring row crops, namely, corn, sorghum and soybean, in
the connection to NDVI obtained from the Sentinel-2 imagery
at the critical stages of the studied crops growth testi-
fied about a high positive correlation between the index
and the yields. Polynomial regression NDVI-based mod-
els for early yield prediction are good for early yield pre-
diction at the probability level of 95 % (p<0.05). The val-

ues of MAPE for the best prediction models are: 8.75 %
for corn, 17.62 % for sorghum, 3.75 % for soybean. Thus,
the NDVI could be used as a tool for early yield prediction
both for scientific and practical needs.

Notwithstanding the fact that a huge number of studies
are devoted to yield simulation by remote sensing indices
it is necessary to obtain more knowledge on the technique
of their implementation in the systems of precision agricul-
ture for giving reasonable advice to agricultural producers.
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Vozhehova R.A., Maliarchuk M.P., Biliaieva .M.,
Lykhovyd P.V., Maliarchuk A.S. Forecasting the yields
of spring row crops by the remote sensing data

Purpose: to develop statistical models to forecast
the yields of major spring row crops, namely, corn, sorghum
and soybean, depending on the data of remote sensing —
normalized difference vegetation index (NDVI), recorded
at the critical stages of the crops growth. Methods. We used
analytical, statistical, GIS-technologies methods to conduct
the study. Remote sensing data for the NDVI computation
was obtained from the satellite Sentinel-2 imagery.
Regression analysis of a polynomial type was applied to work
out forecasting models on the basis of true yielding data,
which were recorded during the harvesting of the studied
crops in the period of 2017-2018 at the experimental field
of the Institute of Irrigated Agriculture of NAAS. Results.
Statistical processing of the data revealed that regression
models are suitable for accurate forecasting of the crops’
yields. The best performance of the regression models
was under the use of NDVI values, which were recorded
at the stage of tasselling (VT) and silking (R1) for corn (the
coefficient of determination is 0.9813), at the stage of second
trifoliate (V2) for soybean (the coefficient of determination
is 0.9829), and at the stage of half bloom (S6) for
sorghum (the coefficient of determination is 0.8645). NDVI
assumption in other studied stages of the crops growth led
to a decrease in the accuracy of the forecasting models.
Conclusions. NDVI is a convenient and flexible, easy-
in-use tool for early yield prediction of major spring row
crops. Further investigations in this field and enhancement
of the performance of the developed models through
the introduction of additional data and use of better
computation techniques is needed to improve the quality
of yield predictions.

Key words: NDVI, regression analysis,
agriculture, corn, sorghum, soybean.

precise
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Boxerosa P.A., Manspuyk M.M., Binsesa IM.,
JNuxoBug MM.B., Mansapuyk A.C. lNporHosyBaHHA BpoO-
XaWHOCTi APUX NpOocanHMX KynkTyp 3a AaHUMM AUCTaH-
LilHOro 30HOYBaHHA

MeTa: po3pobuTn cTaTtMCTUYHI MoAeni NPOrHO3yBaHHSA
BPOXaMHOCTI OCHOBHUX SPUX NPOCAnHUX KynbeTyp, a came:
KYKypy43u, COpro Ta Coi 3anexHo Bif AaHWX CynyTHUKOBOIO
30HOYBaHHA — HOPMani3oBaHOro AMdepPEHLHOro BereTa-
uinHoro inagekcy (NDVI), oTpumaHoro B KpuTu4Hi dasn pos-
BUTKY KynbTyp. MeTogu. AHaniTmyHmmn, ctatuctnyHmn, MNc-
TeXHonoriyHnn mMetoan Bynu 3acTocoBaHi ANs BUKOHAHHS
pocnigpkeHHs. [lani cynyTHUMKOBOro 30HAYBaHHA ANS pO3-
paxyHky NDVI 6yno otpumaHo 3a 306paeHHsiMU i3 cynyT-
Huka Sentinel-2. TMoniHOMiHaNbHWA perpecinHMn  aHanis
Oyno 3acTocoBaHO B pO3pOOMEHHI MPOrHOCTUYHUX MoAe-
nen i3 BUKOPUCTAHHAM PakTUYHUX BEMUYMH YPOXaNHOCTI,
SKi Byno oTpyMaHo nig vac 36upaHHa AOCNIAKYBaHUX Kyrb-
Typ y nepiog 2017—-2018 pp. Ha gocnigHoMy noni [HCTUTyTY
3powyBaHoro  3emnepobctea HAAH. PesynbraTu.

10

CratuctnyHa obpobka AaHuWx Mokasana, Lo perpecinHi
mMogaeni aobpe nigxoaaTb AN TOYHOro NPOrHO3yBaHHS BPO-
XanHOoCTI KyneTyp. Havikpalla TOYHICTb perpecinHux moae-
nen 6yna 3a BukopuctaHHa BenuyunH NDVI, oTpyvmaHmx
y dady sukuaaHHa somnoti (VT) Ta uBiTiHHA KayaHis (R1)
Y KyKypyaau (koediuieHT aetepmiHauii 0.9813), y cbasy apy-
roro Tpinyactoro nuctka (V2) y coi (koediuieHT geTepmiHa-
uii 0.9829) Ta B nepLuy nonosuHy ¢asu LBiTiHHA (S6) copro
(koedpiieHT geTepmiHauii 0.8645). Bennunniu NDVI, otpu-
MaHi B iHLWi pa3un pocTy KynsTyp, NPUBOANUNN A0 3HMKEHHS
TOYHOCTI Mogenen. BucHoBku. NDVI € 3pyyHUM i THyYKnMm,
NMPOCTUM Y BUKOPWUCTAHHI iHCTPYMEHTOM PaHHbOTO MPOrHO-
3yBaHHS BPOXXANHOCTi OCHOBHUX SIPUX MPOCAMHNX KymbTyp.
Mopanblui AOCNIMKEHHS B Uil i NiABULLIEHHSA TOYHOCTI pO3-
pobneHnx moaenen LNaxom BBEAEHHSA A0OATKOBUX AaHUX
i BUKOPUCTaHHS MOMNIMNWeEHO| TEXHIKN 064YncneHb HeobXigHi
ANs NONINWeHHSA AKOCTi NPOrHO3yBaHHA BPOXaNHOCTI.

Knrwouosi cnosa: NDVI, perpeciiiHuii aHanis, TodHe
3emMnepobCcTBO, KyKypyA3a, Copro, Cosl.



